

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND SOLDIER CENTER

PIA Second Regular Meeting Government Systems Committee Personnel Airdrop Science and Technology

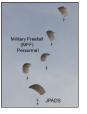
24 AUGUST 2023

Controlled by:	DEVCOM SC
Controlled by:	FCDD-SCD-SAT
CUI Category:	N/A
Distribution Statement:	Distribution Statement A
POC:	brian.g.huffman3.civ@army.mil

ATT | BRIAN HUFFMAN, 508-206-3271

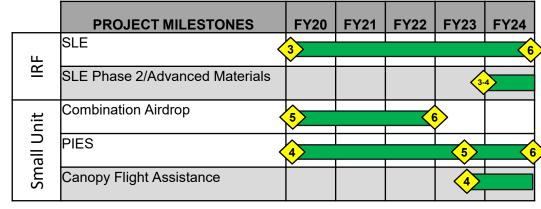
INTRODUCTION

- Discussions today by Government officials involved in the 3rd Party Collections Services Acquisition should not be considered a guarantee of the Government's course of actions in preceding with the requirement
- The information shared today reflects current Government Intentions and is subject to change based on a variety of circumstances. The formal solicitation, when issued, is the <u>only</u> document that should be relied upon in determining and responding to the Government's requirements
- Any costs incurred prior to receipt of a contract signed by the contracting officer is at your own expense
- No recording devices are allowed during this presentation


APPROVED FOR PUBLIC RELEASE

PERSONNEL AIRDROP

- Static Line Enhancements (SLE)
- Explore technologies to support modernization of T-11
- Knowledge transfer to support requirements development and future efforts


- Combination High Altitude JPADS and Personnel Airdrop
- Increase safety of combination airdrop, through mission planning, communications and training

- Personnel Infiltration/Exfiltration System (PIES)
- Personnel Insertion in Anti-Access/Aera Denial (A2/AD) Environment
- Powered Paraglider, single Soldier & equipment, 75-500km

- Canopy Flight Assistance
- Develop technologies to assist users with canopy flight

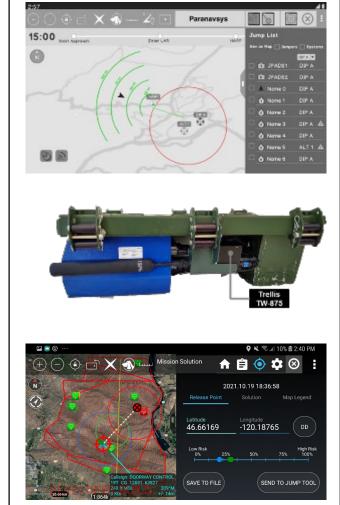
Approved for Public Release

STATIC LINE ENHANCEMENTS

- **Purpose:** Develop personnel airdrop enhancements that save lives while enabling rapid Warfighter insertion for the Joint Forcible Entry and personnel infiltration missions
- Why:
 - Combined size/weight of Soldiers and Individual Equipment have increased, resulting in a reduction of combat power
 - Desire for reduced exposure through more rapid deployment/stabilization and lower exit altitude
- **Description:** Research and development focused on the following
 - Alternative deployment methods (main & reserve)
 - Reduction of altitude loss before main deployment
 - Reduction of the system weight and size
 - Improved harness comfort/weight distribution
- Status:
 - Market Research: Industry Demonstration and Industry Day/Request for Information in FY21
 - Seating and Harness Studies: data collection to characterize loss of paratroopers and current harnesses
 - Concepts to inform future systems: deployment methods, modification/control of parachute during descent, alternative materials for harness/canopy construction

STATIC LINE ENHANCEMENTS – PHASE 2 NOTIONAL PROJECT PLAN

- **Purpose:** Follow on effort in support of A-CDD/CDD development for T-12
- Why: Address TBD A-CDD Desired Capabilities, mature to Technology Readiness Level 6
- Expected Effort:
 - Year 1: Concept Development (Whitepapers)
 - Year 2: Main Canopy Development and Experimentation
 - Year 3: Reserve Canopy Development and Experimentation
 - Year 4: Integration/Full System Development and Experimentation


NOTION	AL PROJECT MILESTONES	FY24	FY25	FY26	FY27	FY28	FY29	FY30
LE Phase 2		3-4				6 <u>,</u>		
				R R R				I
	NOTIONAL PROJECT MILESTONES			FYX	K FYX	1 FYX	2 FYX	3 FYX4
	Requirements Document Generation & Approval							
	Program of Record						6	
	T-11 Employment							

Approved for Public Release

COMBINATION AIRDROP

- Purpose: Increase safety and effectiveness of combined cargo and personnel insertions
- Why:
 - Mission planning uses different platforms/calculations; requires manual computation of the release point
 - No communications for programming, tracking and retargeting cargo systems
- Description:
 - Develop simplified, offline mission planner; available at the unit level on current user hardware/software
 - Enable communications and teaming
- Status:
 - Project complete and transitioned to PdM SCIE in FY22
 - May have follow-on Technical Maturation Initiative funded effort in FY25-26

PERSONNEL INFIL/EXFIL SYSTEM (PIES)

Approved for Public Release

- Purpose: Provide a unit organic, high offset/standoff capability for personnel infiltration, battlefield mobility and/or exfiltration in an Anti-Access Area Denial environment
- Why:
 - Significantly increase the range over traditional ram-air infiltrations (over 75 kms)
 - Improve probability of mission success and safety of flight with assistive technologies to augment or replace user actions to deploy, navigate and land
- Description:
 - Develop/employ commercial off the shelf based prototypes to demonstrate capabilities and support Tactics Techniques and Procedures development
 - Develop mission planning and navigational tools to support threat identification, mission analysis and execution
- Status:
 - Modeling of development vehicle to predict performance: ~ 300 kms range at 300 lbs
 - Demonstration of optional piloted controls and waypoint-based navigation
 - Operational demonstration at Army Expeditionary Warrior Experiment

CANOPY FLIGHT ASSISTANCE

- **Purpose:** Develop technologies to assist/automate canopy flight for course navigation and stack management
- Why: Improve performance of small unit high altitude infiltration teams
 - Increase offset by automatically orienting all jumpers in direction of dropzone immediately after deployment and reducing user input/corrective actions during flight
 - Mitigate jumper exposure (hands above head, poor circulation, etc.) by reducing need for active canopy control starting immediately after canopy deployment
- Description:
 - Integrate automated control mechanisms into RA-1 main canopy for demonstration
 - Initial assessment of feasibility of concept/performance, failure modes, emergency procedures, etc.
- Status:
 - Planning and initial concept development FY23
 - Feasibility assessment FY24

Approved for Public Release

HIGH LEVEL INTEREST AREAS (FUTURE)

ADVANCED CANOPY AND HARNESS MATERIALS

- Lightweight and/or low bulk canopy material to reduce weight and pack volume/depth
- Harness comfort and jumper performance, lighter weight harness/hardware components:
 - > Modular design common to low altitude and high altitude parachute systems
 - > Reducing open shock load requirement for harness and or equipment attachments points
 - Improved sizing/fitment, lighter weight
 - > Increased serviceability/maintainability: replaceable components, rigging and JMPI visual indicators, one way connectors

CONTROLLED DEPLOYMENTS

- Develop technologies or methods for increasing reliability of higher aspect ratio canopy deployments
- Controlling canopy opening based on jumper position (open at beneficial orientation)
- Openings at higher and lower deployment altitudes (e.g. up to 35,000 ft for high offset, below 500 ft for mass tactical)

JUMPER SA

- Heads-up display (HUD) and/or chest mounted, integration with full face mask/O2
 - > O2/Biometric monitoring
 - Communications and proximity tracking
- Incorporate GPS denied technologies when available at SWAP-C
- Low observable technologies

22 August 2023