

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND SOLDIER CENTER

PIA Government Systems Committee Personnel Airdrop Science and Technology

22 FEBRUARY 2024

Controlled by:	DEVCOM SC
Controlled by:	FCDD-SCD-SAT
CUI Category:	N/A
Distribution Statement:	Distribution Statement A
POC:	brian.g.huffman3.civ@army.mil

PR2024-697

ATT | BRIAN HUFFMAN, 508-206-3271

INTRODUCTION

- Discussions today by Government officials involved in the 3rd Party Collections Services Acquisition should not be considered a guarantee of the Government's course of actions in preceding with the requirement
- The information shared today reflects current Government Intentions and is subject to change based on a variety of circumstances. The formal solicitation, when issued, is the <u>only</u> document that should be relied upon in determining and responding to the Government's requirements
- Any costs incurred prior to receipt of a contract signed by the contracting officer is at your own expense
- No recording devices are allowed during this presentation

ARMY PERSONNEL AIRDROP S&T

Static Line Enhancements (SLE) Explore technologies to support modernization of T-11 and inform requirements: canopy control/geometry

 modification, rear deployed reserves, reduced weight/bulk canopies
Next Generation Static Line Parachute (NGSL-P)/T-12 Support NGSL-P/T-12 A-CDD development; mature Gov't design(s) and competitive industry

development of T-11 replacement parachute system

- Combination High Altitude JPADS and Personnel Airdrop Increase safety of combination airdrop through mission planning, communications and training support tools
- Personnel Infiltration/Exfiltration System (PIES) Powered paragliders for single Soldier & equipment (300 lbs, 250 kms); mission planning tool and waypoint navigation

 Canopy Flight Assistance Develop technologies to assist users with canopy flight to maximize offset

notification of potential malfunctions or injuries **Jumper Situational Awareness** Assess potential technology solutions to increase jumper performance: updates to UI/UX, HUDs, O2 integration

Jumper Tracker DZSO SA tool, assist with jumper tracking and status, auto

- High Performance Parachute Opening Increase reliability of parachute deployment of higher aspect ratio canopies/increased altitudes
- Airdrop Mission Planner (AMP) Accurate, easy to use mission planner for cargo and personnel
- AMP Multi-Service Interoperability Support planning and conduct of joint airdrop missions; shared mission profile/solution

	PROJECT MILESTONES	FY23	FY24	FY25	FY26	FY27
IRF	SLE	5		6		
R	NGSL-P/T-12		3	14 3	14	5
Small Unit	Combination Airdrop Technology Maturation Initiative			6		
	PIES	5		6		
	Canopy Flight Assistance	4				6
	Jumper Tracker/DZSO Tool		5		8	
	Jumper Situational Awareness		<	4		6
	High Performance Parachute Opening				4	5
Mission Planning	AMP (ATAK)					
	AMP Multi-Service Interoperability (WINTAK)				2	
	Powered AMP					
	AMP HAARS Modernization					
	Automatic Landing Zone					
	Sustainment Support Network for Aerial Resupply Vehicles					

Unfunded

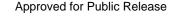
STATIC LINE ENHANCEMENTS

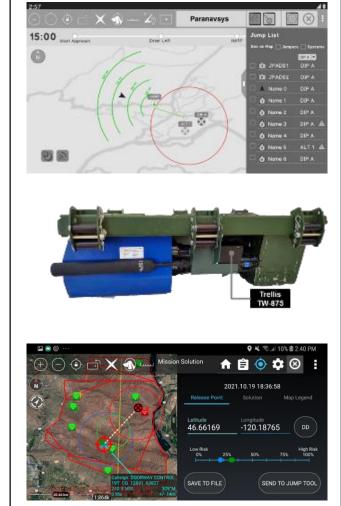
- **Purpose:** Develop personnel airdrop enhancements that save lives while enabling rapid Warfighter insertion for the Joint Forcible Entry and personnel infiltration missions
- Why:
 - Combined size/weight of Soldiers and Individual Equipment have increased, resulting in a reduction of combat power
 - Desire for reduced exposure through more rapid deployment/stabilization and lower exit altitude
- **Description:** Research and development focused on the following
 - Alternative deployment methods (main & reserve)
 - Reduction of altitude loss before main deployment
 - Reduction of the system weight and size
 - Improved harness comfort/weight distribution
- Status:
 - Market Research: Industry Demonstration and Industry Day/Request for Information (RFI) in FY21, 1QFY24
 - Seating and Harness Studies: data collection to characterize loss of paratroopers and current harnesses
 - Concepts to inform future systems: deployment methods, modification/control of parachute during descent, alternative materials for harness/canopy construction

RFI – 1QFY24

- Link: https://sam.gov/opp/abce64d13ea942549c1f2b561d744aa0/view
- Desired Features:
 - Reduce the time for a paratrooper to detect occurrence of a malfunction during canopy deployment and increase paratrooper situational awareness throughout all phases of static line operations.
 - Reduce exit altitude (combat altitude of 500 feet AGL or lower)
 - Reduce system size and weight to maintain maximum number of paratroopers that can deploy from each aircraft type/configuration.
 - Support increased personnel and Combat Equipment (CE) weight up to 400 pounds (exclusive of the parachute system)
 - Optimize paratrooper performance through improved load carriage, increased comfort and increased mobility to reduce fatigue during the entire airborne mission timeline.
 - Increase modularity across all US Army personnel parachutes including low altitude mass tactical systems and high altitude high offset ram air systems.
 - Reduce weight of harness and hardware components
 - Reduce donning/doffing and Jumpmaster Personnel Inspection timelines.
 - Increase serviceability/maintainability through replaceable components with built in service/repair indicators.

NEXT GENERATION STATIC LINE -PARACHUTE


- Purpose: Follow on effort in support of A-CDD and CDD development for T-12
- Why: Address TBD A-CDD Desired Capabilities, mature to Technology Readiness Level 6
- Expected Effort: Development and testing of a main canopy able to support 400 lbs all up/total rigged weight; potential reuse of T-11R
 - Year 1: Concept Development (Whitepapers)
 - Year 2: Main Canopy Development and Experimentation
 - Year 3: Integration with T-11R

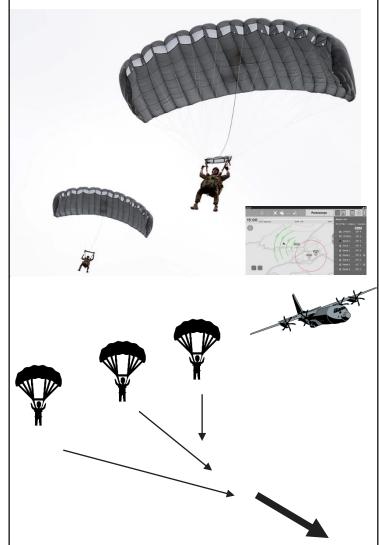

• •								
NOTION	AL PROJECT SCHEDULE	FY24	FY25	FY26	FY27	FY28	FY29	FY30
NGSL-P			A-CDD Approval	4				
	NOTIONAL PROJECT	VILESTO	ONES	FYX	K FYX	1 F.YX	2 FYX3	B FYX4
	Requirements Document Gene (CDD)	ration &	Approval					
	T-12 Program of Record				∢		<u>.</u>	
						•		

Approved for Public Release

COMBINATION AIRDROP

- **Purpose:** Increase safety and effectiveness of combined cargo and personnel insertions
- Why:
 - Mission planning uses different platforms/calculations; requires manual computation of the release point
 - No communications for programming, tracking and retargeting cargo systems
- Description:
 - Develop simplified, offline mission planner; available at the unit level on current user hardware/software
 - Enable communications and teaming
- Status:
 - Project complete and transitioned to PdM SCIE in FY22
 - May have follow-on Technical Maturation Initiative funded effort in FY25-26

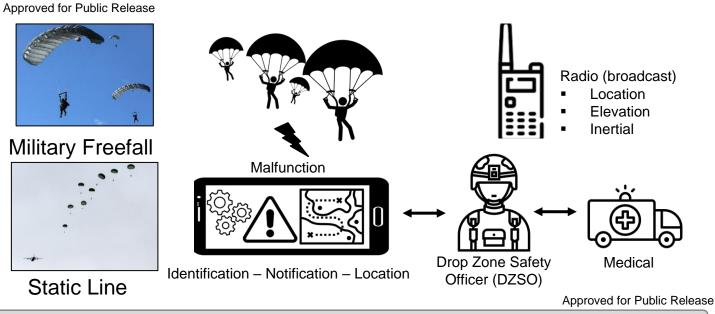
PERSONNEL INFIL/EXFIL SYSTEM (PIES)


Approved for Public Release

- Purpose: Provide a unit organic, high offset/standoff capability for personnel infiltration, battlefield mobility and/or exfiltration in an Anti-Access Area Denial environment
- Why:
 - Significantly increase the range over traditional ram-air infiltrations (over 75 kms)
 - Improve probability of mission success and safety of flight with assistive technologies to augment or replace user actions to deploy, navigate and land
- Description:
 - Develop/employ commercial off the shelf based prototypes to demonstrate capabilities and support Tactics Techniques and Procedures development
 - Develop mission planning and navigational tools to support threat identification, mission analysis and execution
- Status:
 - Modeling of development vehicle to predict performance: ~ 300 kms range at 300 lbs
 - Demonstration of optional piloted controls and waypoint-based navigation
 - Operational demonstration at Army Expeditionary Warrior Experiment

CANOPY FLIGHT ASSISTANCE

- Purpose: Develop technologies to assist/automate canopy flight for course navigation and stack management
- Why: Improve performance of small unit high altitude infiltration teams
 - Increase offset by automatically orienting all jumpers in direction of dropzone immediately after deployment and reducing user input/corrective actions during flight
 - Mitigate jumper exposure (hands above head, poor circulation, etc.) by reducing need for active canopy control starting immediately after canopy deployment
- Description:
 - Integrate automated control mechanisms into RA-1 main canopy for demonstration
 - Initial assessment of feasibility of concept/performance, failure modes, emergency procedures, etc.
- Status:
 - Planning and initial concept development FY23
 - Feasibility assessment FY24



Approved for Public Release

JUMPER TRACKER/DZSO TOOL

Summary: FY24-25 NDCEE funded DZSO tool, pending receipt of funding for project kickoff

Approved for Public Release

Preflight Mission Profile

- Parachute Type & Weight
- Predicted performance

Generate Actual Performance

- Rate of Fall
 - Accelerations

Identify Malfunction

- Compare real time performance to predicted performance at current altitudes and jumper weight
- Identify Malfunctions
- Use current performance to predict landing location

Notification & Location

- Visual notification of Malfunction
- Predicted Landing Location (during descent)
- Display Landing Location

HIGH LEVEL INTEREST AREAS (FUTURE)

ADVANCED CANOPY AND HARNESS MATERIALS

- Lightweight and/or low bulk canopy material to reduce weight and pack volume/depth
- Harness comfort and jumper performance, lighter weight harness/hardware components:
 - > Modular design common to low altitude and high altitude parachute systems
 - > Reducing open shock load requirement for harness and or equipment attachments points
 - Improved sizing/fitment, lighter weight
 - > Increased serviceability/maintainability: replaceable components, rigging and JMPI visual indicators, one way connectors

JUMPER SA

- Heads-up display (HUD) and/or chest mounted, integration with full face mask/O2
 - > O2/Biometric monitoring
 - Communications and proximity tracking
- Incorporate GPS denied technologies when available at SWAP-C
- Low observable technologies

HIGH PERFOMANCE PARACHUTE OPENING

- Develop technologies or methods for increasing reliability of higher aspect ratio canopy deployments
- Controlling canopy opening based on jumper position (open at beneficial orientation)
- Openings at higher and lower deployment altitudes (e.g. up to 35,000 ft for high offset, below 500 ft for mass tactical)